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Introduction Sliding Velocity — A Novel Mechanism

When bacteria flow through a fluid medium such as water, It tends to accumulate @ > The novelty of this research can be a mechanism called sliding velocity i.e.
on any available surfaces. In most cases, bacterial deposition on surfaces inflicts the drift of bacteria along the channel surface, which we believe is
damage and causes rapid degradation. This problem is present on ship hulls, responsible for bacterial increment in flux and density along the channel [3].

measuring instruments, medical devices etc., and is known as biofouling. > In order to get the bacterial density along the channel’s surface, the following
Understanding the physical continuity equation must be coupled to Eqg. (1):
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Research Goals

Our goals In this research are to:

1. Refine a mathematical model and obtain reliable simulation results
describing the deposition of bacteria on the top and bottom plates of a
PPFC by adding the bacterial sliding velocity as a parameter.

2. Solve the model numerically using COMSOL Multiphysics software.

3. Compare our model to present experimental results (LI et al. 2012).
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Present Model

We assume a fully developed Poiseuille flow in the channel (Fig. 3).
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Results and Conclusions

» Solving Eq. (1) numerically for the bottom plate in COMSOL gives the flux
as a function of both time and distance from the inlet (Fig. 5). The model
was solved for different values of K., (Fig. 6).

» Incorporating Eq. (6) in the model yields the numerical solution for bacterial
density along the channel’s bottom plate for different time periods (Fig. 7).
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Fig. 3: A 2D cut-plane of the PPFC with a parabolic velocity profile [1].
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In Order to Solve the PDE boundary Conditions must be Set on the Channel Wa”S Fig. 6: Bacterial flux on the PPFCs bottom plate vs. Fig. 7: Bacterial density vs. distance from inlet for
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Those conditions are given by:

Jy=0n = KaeplCs — C(y = 0)]r, (4)

Where r Is the unit vector normal to the wall, C; Is the solution concentration In
equilibrium with the surface (taken to be 0), and K., Is the fitting Kinetic
parameter which describes interactions between the bacteria and the wall [1].
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