

Removal of Toxic Heavy Metals by Bacterial Biofilms

Edgar Moreno, Konstantinos Ioannou, Joseph Shoyer, Noah Golan

Mentor: PhD student Ani Vardanyan Laboratory of Prof. Robert Armon, Faculty of Civil and Environmental Engineering

Bacteria growth conditior

esistan test

Sol-ge

matrix

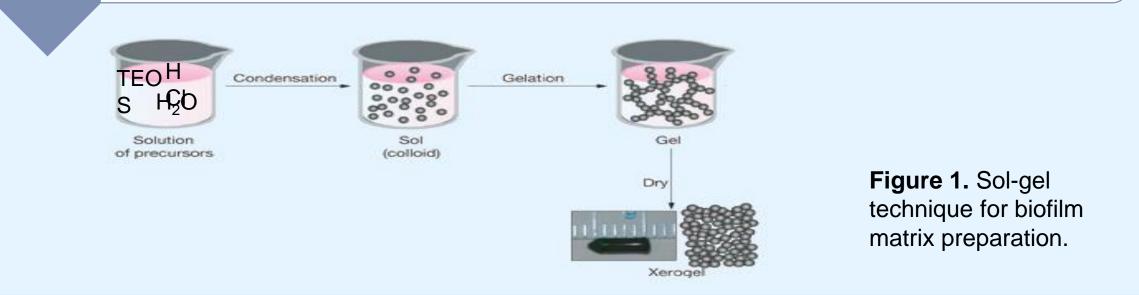
\dsorptio

test

Background

Heavy metals pollution is a major problem when dealing with industrial wastes and should be of great concern [1]. Many methods have been proposed for efficient removal of heavy metals. Biosorption is considered to be one of the relatively new and promising processes in the removal of heavy metals from water and wastewater [2]. Numerous studies have been carried out to create suitable biosorbents for this purpose. One of the examples of common biosorbents are bacteria that, can purify the water by adsorption [3]. This process can be developed through the growth of biofilms on specialized matrices.

The following research monitored the efficacy of *Deinococcus* Radiodurans (DR) in the heavy metal removal.


Methodology

- A fresh inoculum of DR bacteria was grown in Tryptone, Glucose, Yeast extract (TGY) media and incubated at 37°C with shaking.
- Bacterial resistance was determined by measuring the bacterial growth in liquid media supplemented with different concentrations of heavy metals.
- The matrix for biofilm growth was developed by using sol-gel technique (Fig.1). TEOS was used as a precursor for condensation and polymerization reactions. 0.01M HCL and 0.1M KOH were used as catalysts in two step procedure.
- Cd²⁺ removal was tested by exposing sol-gel with and without biofilms to different initial concentrations of heavy metal in distilled water. Heavy metal concentration was measured in distilled water at set time intervals by ICP.
- Sorption method of DR was examined by comparing the adsorption rate of Cd^{2+} ions by the live and dead bacteria.

Goals

- Testing bacterial resistance to heavy metal stress •
- Synthesis of a hydrogel surface for biofilm growth by sol-gel method ۲
- Removal of heavy metal by DR biofilms

• Heating at 120°C was used as a killing method for bacterial cells. adsorptio

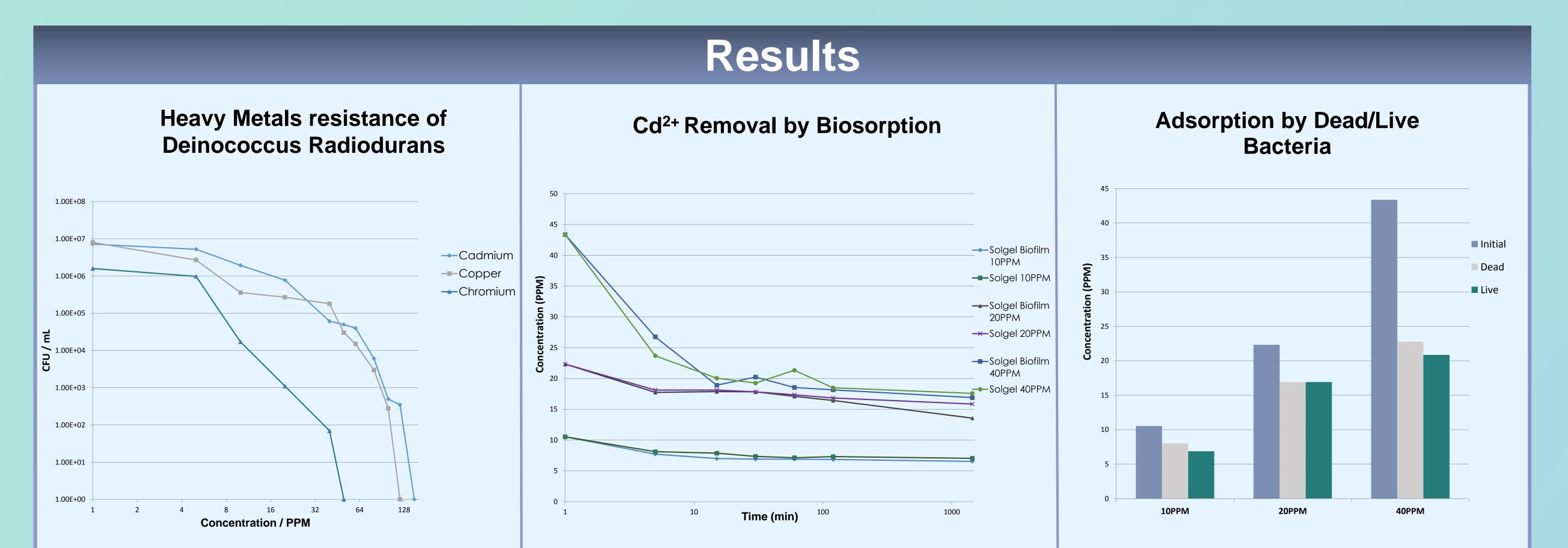


Figure 2. DR resistance to different heavy metal stress.

Figure 3. Cd²⁺ sorption on sol-gel matrices with and without biofilm presence.

Figure 4. Cd²⁺ sorption by dead and live bacteria at different initial concentrations.

Conclusions and Discussion

- \succ Bacteria can resist high concentrations of heavy metals, up to 150ppm. The tolerance of the tested strain was observed to be in order of Cd>Cu>Cr (Fig. 2).
- \succ Most of the sorption occurs in the first few minutes (Fig.3). A slow \succ adsorption continues after it and saturation occurs after a day (or more) only.
- \succ The removal of Cd²⁺ by sol-gel together with bacteria is nearly the same as the removal by only sol-gel (Fig. 3). This can be explained by the fact that without biofilms heavy metal ions could be adsorbed on silica surface and penetrate inside of its pores, which was confirmed by the change of heavy metal detector color (PAN). However, Cd²⁺ ions couldn't reach silica surface when it was

covered with biofilms, and instead the adsorption occurred only by bacterial cell walls. In this case the metal indicator didn't change its color and remained yellow.

- The total removal is getting higher with higher dose of Cd ions (Fig.3), which can be explained by more available Cd²⁺ ions for binding sites on sol-gel surfaces.
- Live/dead cell test showed a tendency of live bacteria to adsorb more heavy metals than the dead cells (Fig. 4). This could be explained by two different mechanisms of metal adsorption that live bacteria can provide: bioaccumulation and biosorption. However, more experiments are needed to show the correlation between physical state and adsorption method by bacterial cells.

Acknowledgments

We would like to extend our sincere gratitude to PhD student Ani Vardanyan and to Prof. Robert Armon for hosting us through our

References

- 1. Järup L. Hazards of heavy metal contamination. *British Medical Bulletin*, Volume 68, Issue 1, December (2003) 167–182

research in his lab. We would also like to thank the foundations and

2. Jyh-Ping Chen & Yung-Sheng Lin. Sol-gel-immobilized recombinant E. coli for biosorption of Cd²⁺. Journal of the Chinese Institute of Chemical Engineers, 38, (2007) 235–243 3. Janos Szilva & Gabriels Kuncova. The application of a Sol-Gel technique to preparation of a heavy metal biosorbent from yeast cells. Journal of Sol-Gel Science and Technology, 13, (1998) 289–294